Thanks, Kubra, for sharing your thoughts. I never used Deep image prior. It is a cool idea, yet, its training cost is a barrier. As you mentioned, the total time spent on training is optimized; that's correct. Yet, this training time is incurred for every image, i.e., every image is a training sample, there is no inference.

Furthermore, I had a colleague who used deep prior for RGB-D images [1]. The training cost becomes more severe as the number of dimensions increases.

So, Yes, for 2D images the cost might be manageable, but I would proceed with caution for higher dimensions (e.g., videos). Thanks again for sharing your input :)

[1] Depth Completion Using a View-constrained Deep Prior



Ahmed Taha

I write reviews on computer vision papers. Writing tips are welcomed.